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Abstract. When the polarisations of two photons are correlated, the result of a measure- 
ment of a polarisation component of one of the photons is not independent of the choice of 
the component measured on the second photon (even if the two measuring instruments are 
very distant). In this paper, we compute the probability of a change in the readings of the 
first instrument, associated with a given change of orientation of the second instrument. 
Under optimal conditions, we show that in at least 41% of cases (42 - 1) the readings of one 
of the instruments cannot be independent of a reorientation of the other one. 

1. Introduction and glossary 

In general, quantum theory gives us only statistical predictions for the outcomes of 
measurements. It is possible to explain (or at least to simulate) these statistical laws by 
deterministic theories with additional ‘hidden’ variables (Bell 1966, Bohm and Bub 
1966) contrived in such a way that an average over these variables gives results identical 
to the quantum mechanical average. However, the following remarkable theorem was 
proved long ago by Bell (1964). If two systems have correlated properties because of 
their past history, it is impossible to separate their hidden variables in two subsets, such 
that the outcomes of measurements performed on each system depend only on one of 
these subsets. 

It was later shown that the same property holds for systems correlated by their future 
history (Costa de Beauregard 1979a) and that it can be formulated in purely macros- 
copic terms without any reference to hidden variables (Stapp 1971, Eberhard 1977, 
Peres 1978). Namely, consider the outcomes of all possible pairs of measurements 
which can be devised for the two correlated systems, even though the actual per- 
formance of one such pair of measurements precludes the simultaneous performance of 
any other pair.? Moreover, assume that the readings of each instrument are not 
affected by the experimental set-up of the other instrument. Then the outcomes of all 
these measurements (whether actually performed or not) cannot satisfy correlations as 
strong as those requested by quantum theory. They can only satisfy the weaker classical 
correlations (Peres 1978). 

This astonishing result seems to imply the existence of an instantaneous ‘influence’ 
conveyed over arbitrarily large distancest (Stapp 1977, Costa de Beauregard 1978, 

0 Now at Elbit Computers Ltd, Haifa, Israel. 
t E.g., in the simpler case of a single particle, we can devise measurements of q or p ,  but the actual 
performance of one of these measurements precludes the performance of the other. 
$This effect was foreseen by Einstein (1949) who used the word ‘telepathically’. 
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Slaby 1978). The purpose of our work is to calculate the probability of a change in the 
readings of one instrument, in relation to alternative set-ups of the other instrument. 
Our calculations are model independent. In particular they do not involve the use of 
hidden variables. 

Consider as an example the experimental set-up proposed by Aspect (1976) and 
schematically described in figure 1. It consists actually of four different experiments, of 
which only one is actually performed for each photon pair. We shall use the following 
terminology: each pair of angles of the analysers (a& as, yp or yS) corresponds to an 
experiment. The set of possible observations of a pair of orthogonally polarised photons 
will be called a run (Davidon 1977). Therefore each run involves four different 
experiments. Only one of these is actually performed and we can try to guess (or to 
compute, if we have a suitable theory) the results of the three other experiments. 

\ 

Figure 1. Two photons with opposite polarisations are emitted in an S-P-S cascade. They 
pass through random optical commutators C1 and C2 toward polarisation analysers 
oriented along the directions a, p, y and S. There are four different pairs of angles (a@, as, 
yp and yS) and therefore four different experiments which are simultaneously considered. 
Of course, only one of these experiments is actually performed for each photon pair. 

The diagram in the left corner shows the set of angles (three times 22.5") giving the 
maximum violation of Bell's inequality. 

Let A, B, C or D be defined as +1 if a photon has passed through one of the 
analysers at angles a, 0, y or S respectively, -1 if it has been rejected by that analyser. 
The results (observed or computed) of a series of runs can be represented by table 1. 
Because of rotational symmetry, their average values must be 

( A )  = ( B )  = (C) = (D) = 0,  (1) 

which can be trivially satisfied. Moreover, since the photons have orthogonal polarisa- 
tions, there are correlations between the readings of the instruments. According to 
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Table 1. Outcomes (real or imagined) of a series of runs, assuming that each reading of 
analyser a or y is independent of whether the other analyser is /3 or 6, and vice versa. Here 
and in the following tables, + and - mean *l, for brevity. 

Run Readings of instruments 
no. A B C D 

quantum theory we have, for each of the four possible experiments (Clauser and 
Shimony 1978): 

(AB)  = Q~ = -COS 2e1, 

( A D )  = Q 2  = -cos 282, 

(CB) = Q~ = -COS 2e3, 

(CD) = o4 = -COS 2e4, 

where 8 denotes the relative angle, i.e., = p - C Y ,  O2 = CY - S ,  O3 = y - p  and B4 = y - S .  
In fact, it is not necessary to make use of quantum theory: each one of the above 

relations may simply be considered as an empirical result for the corresponding 
experiment (Freedman and Clauser 1972, Clauser 1976, Fry and Thompson 1976). 
Therefore the calculations of the presentpaper are independent of the validity of quantum 
theory (as’long as the correlations Qi depend only on the relative angles of the 
analysers). 

The outline of this paper is as follows. In 0 2, we show that table 1 is incompatible 
with the correlations (2). In other words, it is impossible to assume that the readings of 
an analyser at angle a or y are independent of whether the other angle is p or 8, and vice 
versa. We must therefore specify whether we are measuring A, (first experiment) or As 
(second experiment),and likewise for the other variables. Consequently, table 1 must 
be replaced by a more complicated table with eight + or - signs for each run. This 
point is discussed in § 3, where the runs are divided in various classes : a run of class n 
(where n = 0, . . , ,4) is one where n of the following equations are violated: 

A, = A s ,  c, = cs, 
B, =BY, D, =D,. 

(3) 

The runs of class 0 are those which satisfy intuitive separability: two distant instruments 
do not affect each other’s readings. In runs of class 1, the instantaneous ‘influence’ has 
altered one of the readings, in runs of class 2, two of them, etc. 

Our problem is to find what is the minimum percentage of runs of class 1 (or higher) 
so that the correlations (2) may be satisfied. This problem is solved in 0 4. It is found 
that although this minimum is unique, the solution corresponding to it is not. In 
particular, we can arbitrarily impose that any three of equations (3) be satisfied, without 
affecting the total amount of nonlocal ‘influence’ needed to satisfy equations (2). 
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Finally, § 5 discusses the meaning of our results in a relativistic theory, where the 
notion of simultaneity is no longer valid. 

2. Bell's inequality 

For each run in table 1, there are Z4 = 16 different possible outcomes. In order to 
simplify the calculation of the 16 relative frequencies of the various types of runs, we 
note that equations (2) remain invariant under the substitution A +AD,  B + BD, 
C + CD and D + D 2  = 1. We can therefore assume without loss of generality that 
D = 1. This amounts to keeping unchanged the subset of runs having D = +1, and 
changing all signs in the other subset. Of course with that convention, we no longer 
have to satisfy equations (1). 

We thus have only 8 different outcomes, the relative frequencies of which are given 
in table 2. We readily obtain, from equations (2) 

Q1= ( p  - ~ ) - ( q  - w ) - ( T - u ) - ( s  -f), 

We are now faced with the following consistency problem: each one of the relative 
frequencies p ,  . . . , w must be non-negative and their sum must be equal to one. 

Since -1 s Qi s 1, each one of the expressions ( 5 )  also lies between -1 and 1. 
Therefore the positivity requirement alone for p ,  . . . , w never causes any difficulty. 
However, the sum rule may sometimes be impossible to satisfy. E.g. consider the case 

Table 2. Relative frequencies of outcomes A,  E and C, assuming that D = 1 and that the 
readings of each instrument are independent of the orientation of the other instrument. 

Relative Readings of instruments 
frequency A B C D 
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represented in figure 1, where the angles 281, 202 and 283 are acute, while 204 is obtuse, 
so that Q1, Q2 and Qs are negative, but Q 4  is positive. Since 

(Q4- QI - Q2- W / 2  = ( p  + q  + r +SI-(?+ U + o + w ) ,  (6) 

the LHS of this expression should be less than one (this is Bell’s inequality). 
Now according to the correlations (2)-which can be either derived from quantum 

theory or simply measured experimentally-the LHS of (6) may exceed 1. Its maximum 
value is J2, when el = O2 = O3 = ~ / 8  and O4 = 3 ~ 1 8 .  This is due to the fact that the 
cosine correlation is ‘too strong’ (Herbert 1975). The weaker classical correlations 
(Peres 1978), namely 

would yield exactly 1 for the LHS of (6). In that case, we would have t = U = U = w = 0 
and p ,  q, r and s would be uniquely given by equations (5). 

Obviously, the logical flaw in the preceding calculations was to assume that the 
readings of each instrument are not affected by the orientation of the other one. We 
shall call this assumption ‘intuitive separability’. Actually, when we measure A, we 
should specify whether this is done as part of the first experiment (other analyser along 
direction p )  or of the second experiment (other analyser along direction 6). Denoting 
the results as A, and As respectively, with similar notations for the other analysers, the 
intuitive separability conditions are given by equations (3). These conditions were 
hitherto assumed as self-evident. We now see that at least one of them must be violated. 
The question to which we address ourselves in this paper is: how often must this 
happen? 

3. Construction of a consistent set of runs 

If equations (3) are no longer taken for granted, each column of readings in table 1 must 
be replaced by a pair of colum,is, e.g. column A becomes columns A,  and As. There 
are now 2’ = 256 types of runs, which can be subdivided into various classes, depending 
on how many of equations (3) are violated. There are 16 different runs of class 0 (none 
of these equations is violated), 64 of class 1 (one is violated), 96 of class 2 ,64  of class 3 
and 16 of class 4. 

In this section we shall assume for simplicity that we have only runs of classes 0 and 
1. A consistent set of such runs is constructed in table 3. The generalisation to arbitrary 
runs will be discussed in the next section, where we show that this set actually minimises 
the violation of the separability equations (3). 

To construct table 3, we have assumed that D, = 1 (this is similar to the assumption 
D = 1 in the construction of table 2 and does not restrict the generality of the results). 
The first four rows of table 3 satisfy the separability conditions (3) and are actually the 
same as the first four rows of table 2. On the other hand, none of the rows of table 3 
corresponds to the last four rows of table 2. Our reason for this choice can be seen in 
equation (6): as the difficulty was that its LHS was ‘too large’, we therefore make the RHS 
as large as possible by setting t = U = U = w = 0, as in classical correlations. 

Even with this choice, the cosine correlations are too strong (their absolute values 
are too large) to satisfy all the equations (2) with the first four rows of table 3. We 
therefore tentatively add a fifth row, with runs such that A, #As, but satisfying the 
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Table 3. A set of instrument readings (real or imagined) consistent with the quantum 
correlations, equations (2). These readings satisfy at least three of the separability condi- 
tions, equations (3). It will be shown in 5 4 that this is the ‘best’ set, minimising the violation 
of equations (3). 

Relative Readings of instruments 
frequencies Experiment 1 Experiment 2 Experiment 3 Experiment 4 
of runs A,  Be As Dm c, B Y  Cs D, 

+ -  - +  + -  + +  
- +  - +  + -  + +  
- +  - +  - +  + +  
+ -  i- - +- - + +  

t The sum of the relative frequencies of the last four rows is $(Q4 - Q1 - Q2 - Q,) - 1. 

three other equations (3). Since we have to increase the absolute values of the 
correlations, we choose 

1 = Cs to increase Q4 = ( C a y ) ,  

= C, by virtue of (3), 
= -By to increase / Q 3 1  = -(C,B,), 

= -Be by virtue of (3), 

= A ,  to increase l Q l l  = -(A,Be), 

= -As because the first of equations (3) is violated, 

= D, to increase IQ2[ = -(A,JIe), 

= D, by virtue of (3). 

The last line coincides with our initial assumption and shows the consistency of these 
relations. 

We have thereby constructed the fifth row of table 3. Assuming that the following 
rows do not appear, we can now easily find the relative frequencies of these five types of 
runs, so that the quantum correlations (2) are satisfied. For the first three types, the 
relative frequencies turn out to be 

(1 + Qi)/2 = sin2 Bi, 

(1 - Q4)/2 = COS’ e4, 

(8) 

(9) 

(10) 

for the fourth one, 

and for the last one, which violates separability, it is 
1 2 
y(Q4  - Q1 - Q2 - Q3) - 1 = sin2 O4 -sin2 el -sin O2 - sin2 &. 

Note that this is exactly the amount by which Bell’s inequality is violated. It can be as 
large as J 2  - 1 2: 41% of the runs. 
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Exactly the same results are obtained if instead of A,  #As ,  we assume that any 
other of equations (3) is violated. Therefore in the final form of table 3, we cannot 
specify the individual relative frequencies of the various runs of class 1, but only their 
total relative frequency, equation (10). 

4. Effect of higher class runs 

In the preceding section we have shown that if we restrict ourselves to runs of types 0 
and 1 (if at most one of equations (3) is violated) a consistent set of relative frequencies 
is given by table 3. It would be desirable to have a formal proof that this is indeed the 
solution which minimises the violation of equations (3). A rigorous mathematical proof 
is certainly possible (there are only 128 variables) but undoubtedly very cumbersome. 
We shall therefore proceed in the same heuristic way which already led us to eliminate 
runs such as those of the last four lines of table 2. 

Since the violation of equations (3) is needed to increase the absolute values of the 
correlations, we can write (starting as before from D,) 

D, = Cs C, # B, 2 B, # A ,  -LA, # D, 2 D,, (11) 

where 2 means either = or # . Consistency of the first and last terms implies that 
either one or three of the 1 signs means # . In other words, only runs of classes 1 and 3 
can help to increase all the I Q i l .  On the other hand, runs of even class would decrease at 
least one of the l Q i l .  We would then need additional runs of odd class to compensate 
their effect. 

The four possible runs of class 3 which satisfy equation (1 1) are given in table 4. It is 
seen that they improve the I Q i /  in exactly the same amount as the runs of class 1 (see 
table 3). They only involve more nonlocality. 

It is therefore plausible that table 3 is indeed the ‘best’ solution of our problem. We 
see that the nonlocal effect foreseen by Einstein (1949) and formally proved by Bell 
(1964) is quite large: if B1 = B2 = B3 = ~ / 8 ,  more than 41% of runs cannot satisfy 
equations (3). They must violate the intuitive requirement that the readings of one 
instrument are not affected by a change of orientation of the other, distant instrument. 

Table 4. Runs of class 3 which affect all the correlations in the desirable direction. 

Remaining Readings of instruments 
separability Experiment 1 Experiment 2 Experiment 3 Experiment 4 
condition A, Be As D, c, B, cs D, 

Ap=As + -  + -  - +  + +  
B, = B, - +  + -  - +  + +  
c, = c, - +  + -  + -  + +  
D, = D, + -  - +  - + + +  

5. Remarks on causality 

Up to now, we have tacitly assumed that the two halves of each experiment are 
simultaneous. However, this property was never used explicitly. It is quite possible to 
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arrange the experimental set-up (figure 1) so that its Clay part is in the past light cone of 
C2pS (Costa de Beauregard 1979b). In that case, it is reasonable to expect that A, = A, 
and C, = C,, since these readings can be irreversibly recorded before the optical 
commutator CZ has to make its choice between p and S .  However, we have already 
seen that our intuition may fail. It is therefore gratifying that the solution of our 
problem (table 3) is not unique. We can arbitrarily impose AP = A  ,nd CO = c6 (or 
B, = B, and D, = D,) without changing the total amount of nonlocality. 

In a relativistic theory, there is no absolute simultaneity. If the two halves of the 
experiments are mutually space-like, either one of them can be considered as ‘first’ and 
subject to equations (3), while the other one is ‘last’ and may violate (3). This leads us to 
speculate that if we want to have a relativistic quantum theory with hidden variables, the 
values of the latter cannot be Lorentz invariant. 

In the foregoing, we have assumed that the orientations of the analysers are set up 
independently and that no information can be conveyed between them by conventional 
means, as in the experiment proposed by Aspect (1976). This property, however, does 
not hold for ordinary experiments where the orientations of the analysers are prepared 
well in advance. In that case, the violation of Bell’s inequality by quantum theory has 
different implications than when the orientations are really independent: the cor- 
relation may be construed as due to a ‘common cause’ proceeding with subluminal 
velocity. It is noteworthy that quantum theory has never been tested in the regime 
considered by Aspect: usually, experiments are performed in macroscopic space-time 
regions which are extremely elongated in the time direction. A space-like experiment is 
certainly very desirable. 
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